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Within the framework of the random replicator model of ecosystems, we use equilibrium statistical mechan-
ics tools to study the effect of manipulating the ecosystem so as to guarantee that a fixed fraction of the
surviving species at equilibrium display a predefined set of characters �e.g., characters of economic value�.
Provided that the intraspecies competition is not too weak, we find that the consequence of such intervention
on the ecosystem composition is a significant increase on the number of species that become extinct, and so the
impoverishment of the ecosystem.

DOI: 10.1103/PhysRevE.74.051919 PACS number�s�: 87.23.Cc, 75.10.Nr

I. INTRODUCTION

Experimental studies that manipulate species richness by
using synthesized model ecosystems are beginning to unveil
how the interactions among species affect the structure of
ecosystems �see, e.g., �1,2��. Intensive land use in agriculture
may be viewed as one such large scale, though uncontrolled,
experiment. In this paper we show how the effects of a simi-
lar manipulation can be investigated within the random rep-
licator model framework �3,4�. This is achieved by imposing
that a certain fraction of the species that compose the eco-
system at equilibrium exhibit a series of predetermined fea-
tures �e.g., features of economic value�. We then look at the
overall effect of this intervention on the structure of the eco-
system.

We assume that the concentration of individuals of spe-
cies i=1, . . . ,N in the ecosystem, described by the real-
valued quantity xi� �0,N�, is governed by the replicator
equation �5,6�,

dxi

dt
= xi�Fi − �� , �1�

where Fi=−� jJijxj can be identified with the fitness of
species i and � is a Lagrange multiplier that enforces the
constraint

�
i=1

N

xi = N �2�

for all t. Following common practice in taxonomy, we admit
that each species is characterized by a set of p phenotypic
characters or features, �=1, . . . , p �7�. To identify whether
species i exhibits or not a given character, say �, we intro-
duce the binary variables �i

� such that �i
�=1 means that spe-

cies i possesses that character and �i
�=−1 that it does not �8�.

We note that by assuming that the number of characters is
extensive, i.e., p=�N with � of order 1, we guarantee that
each species is assigned a unique set of characters. In fact,
we can easily verify that the probability that two species are
assigned the same set of characters vanishes as 2−�NN2 in the
limit of large N. Since p is the number of features needed to
specify the species, it is logical to associate � with the over-
all complexity of the species that compose the ecosystem and
hence with the complexity of the ecosystem itself.

In line with the competitive exclusion principle �9�, which
asserts that two species living together cannot occupy the
same ecological niche, we assume that the intensity of the
competition between any two species is proportional to the
number of features they share. Hence it is natural to intro-
duce the Hebb rule

Jij =
1

N
�
�=1

p

�i
�� j

�, i � j �3�

as a prescription for the strength of the interaction between
species i and j �8�. Accordingly, Jij �0 must correspond to
pairs of competing species whereas Jij �0 to pairs of coop-
erating species. Equation �3� is the celebrated Hebb rule,
extensively studied in the 1980s in the context of attractor
neural networks �see, e.g., �10��. As in the neural networks
context, from the biological viewpoint the fact that the inter-
species coupling Jij is symmetric can be viewed as an utterly
unrealistic assumption which, on the other hand, allows a full
equilibrium statistical mechanics analysis of the model eco-
system. Relaxation of this assumption, allowing thus the in-
vestigation of asymmetric couplings as well, is possible
through the use of generating functional techniques. The re-
sults obtained for the asymmetric interactions, however, are
qualitatively similar to those for the symmetric case �11,12�.

In the case of symmetric interactions and for zero tem-
perature, the asymptotic regime of Eq. �1� can be fully de-
scribed by examining the maxima of the fitness functional
�3�

F��xi�� = − �
i,j

Jijxixj �4�

subject to constraint �2�. As usual, this constraint is taken
into account by the addition of an extra term to Eq. �4�,
R̂�ixi, where R̂ is a Lagrange multiplier. In this setting, it can
be shown that the only stationary states are fixed points �6�.
In addition, we note that in this case the Lagrange multiplier
� in Eq. �1� is interpreted as the mean fitness of the ecosys-
tem, i.e., �= 1

N�ixiFi.
Manipulation of the ecosystem composition is achieved

by introducing an additional set of constraints
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m� =
1

N
�

i

�i
�xi �5�

for �=1, . . . ,s, where s is finite in the thermodynamic limit.
This means that the fraction �1+m�� /2 of the species that
form the ecosystem exhibit character �. For example, m�

=1 represents the extreme situation in which all surviving
species must possess character �. Clearly, m�� �−1,1� is the
overlap between the N-dimensional character vector
��1

� , . . . ,�N
� � and the equilibrium species concentration

�x1 , . . . ,xN�.
As the last ingredient in the definition of the random rep-

licator model we introduce a quadratic damping term that
accounts for the self-limitation in the growth of each species,
Jii=u�0 for all i. This term prevents the unbounded growth
of any single species in the thermodynamic limit N→�, and
so we will refer to u as the intraspecies competition param-
eter.

In what follows we carry out a standard equilibrium sta-
tistical mechanics analysis of the ecosystem model defined
by the fitness functional �4� and the constraints �2� and �5�.
This study is feasible provided we assume that the feature
variables �i

�’s are independent random variables.

II. STATISTICAL MECHANICS ANALYSIS

As usual, we introduce the partition function

Z = �
0

�

	
i

dxi	
N − �
i

xi�	
�=1

s

	
Nm� − �
i

�i
�xi�


 exp��F��xi��� , �6�

where �=1/T is the inverse temperature. Taking the limit
T→0 in Eq. �6� ensures that only the states that maximize F
will contribute to Z. Here we focus on the zero-temperature
limit so T can be viewed as an auxiliary parameter necessary
to carry out the calculations but devoid of any physical
meaning. We refer the reader to Refs. �13,14� for a full
analysis of the effects of T�0 in the case constraint �5� is
relaxed.

Assuming that the �i
�’s are independent random variables

that take on the values ±1 with equal probability, we must
calculate the average free-energy density f defined by

− �f = lim
N→�

1

N
�ln Z
 , �7�

where the notation �¯
 stands for the average over the prob-
ability distribution of the quenched random variables �i

�, �
=1, . . . , p. The evaluation of this average is carried out
through the replica method, which consists of calculating
�Zn
 for integer n, i.e., Zn=	a=1

n Za and then using the identity

�ln Z
 = lim
n→0

1

n
ln�Zn
 , �8�

in which it is implicit the analytical continuation to n=0
�15�. The calculation of Eq. �8� is rather standard �see, e.g.,
�14,16,17��, except for the fact that the low or condensed

character vectors �i
�, �=1, . . . ,s, must be treated differently

from the high or uncondensed ones �i
�, �=s+1, . . . , p. More

pointedly, following the same procedure used in the neural
networks case �18�, we explicitly average out the high char-
acter vectors, as well as their overlaps with the equilibrium
species concentration, but use the self-averaging property to
carry out the average over the low character vectors. Within
the replica-symmetric framework we find

− �frs = 2qq̂ + R̂ + �
�=1

s

m��m̂� − �m�� −
��q

1 + 2��Q − q�

+ Q�Q̂ − ��u − ��� −
1

2
ln�Q̂ + 2q̂�

−
�

2
ln�1 + 2��Q − q�� + �� Dz ln�e�z

2
erfc��z���

�

,

�9�

where

�z =
R̂ + ��

m̂��� − 2q̂1/2z

2�Q̂ + 2q̂�1/2
�10�

and we have dropped trivial additive factors. Here Dz
=exp�−z2 /2�dz /�2
 is the Gaussian measure and the nota-
tion �¯
� stands for the average over the statistically inde-
pendent variables �� distributed by

	
�=1

s �1

2
	��� − 1� +

1

2
	��� + 1�� . �11�

The saddle-point parameters R̂ and m̂� enter the calcula-
tions as Lagrange multipliers used to enforce constraints �2�
and �5�, respectively. Similarly, Q̂ and q̂ are Lagrange mul-
tipliers associated to the two physical order parameters of the
model,

Q =
1

N
�

i

Š�xi
2
T‹ �12�

and

q =
1

N
�

i

Š�xi
T
2
‹ . �13�

Here the thermal average is calculated using the replica-
symmetry prescription for the Gibbs distribution

W��xi�� = 	
N − �
i

xi�	
�=1

s

	
Nm� − �
i

�i
�xi�



1

Z
exp��F��xi��� . �14�

The saddle-point parameters q, Q, R̂, q̂, Q̂, and m̂� are ob-
tained by solving the 5+s coupled nonlinear equations that
result from extremizing the free-energy with respect to each
of them. The situation is considerably simplified in the zero-
temperature limit �→�, in which the states that maximize
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the fitness functional �4� are singled out. In this limit, it is
convenient to introduce the auxiliary parameters, �

= R̂ /2q̂1/2, M̂�= m̂� /2q̂1/2, �= �Q̂+2q̂� /�, r= q̂ /�2, and v
=2��Q−q�. Note that, according to Eqs. �12� and �13�, v is
proportional to the average variance of the species concen-
tration at equilibrium and so v�0. The saddle-point equa-
tions in the zero-temperature limit are then written as

v =
1

�����

�

Dzz�z − ����
�

, �15�

1 =
r1/2

� ����

�

Dz�z − ����
�

, �16�

m� =
r1/2

� ����
��

�

Dz�z − ����
�

, �17�

� = u −
�v

1 + v
, �18�

Q =
r1/2

�
�r1/2v − �

�

s

m�M̂� − �� , �19�

r =
�Q

�1 + v�2 , �20�

where ��=�+��
s M̂���. We note that by considering m� as a

saddle-point parameter as well, and so maximizing frs with

respect to it, one gets the additional equation m�=r1/2M̂�

which, together with Eq. �17�, yields m�=M̂�=0. In this case
one recovers the equations for the relaxed case �17�, indicat-
ing that, in the absence of the constraint �5�, half of the
species exhibit any given character whereas the other half do
not. Because the probability distribution of the binary vari-
ables �i

� is unbiased, the resulting saddle-point equations are
invariant to the change m�→−m� and so we can consider
m�� �0,1� without loss of generality.

For completeness, we also calculate the de Almeida-
Thouless condition �19� that must be satisfied by the saddle-
point parameters in order that the replica-symmetric solution
is locally stable. We find �see �20� for details of a similar
calculation�

� =
�

�2�1 + v�2��
��

�

Dz�
�

� 1. �21�

III. SADDLE-POINT PARAMETERS

The parameter Q has a direct ecological interpretation,
namely, it is proportional to the probability that two ran-
domly selected individuals belong to the same species, a
measure known as Simpson’s index in the ecology literature
�21�. Henceforth we will refer to Q as Simpson’s index,
though, strictly, the correct definition of that index is Q /N. In

addition, we will refer to parameter v as the susceptibility
since it measures the fluctuations of the species concentra-
tions around the equilibrium value.

To avoid the undue proliferation of parameters, in this
contribution we deal with the symmetric constraint m�=m
for �=1, . . . ,s only. This means that the fraction of species
exhibiting any of the s selected characters is �1+m� /2. As a

result we have M̂�=M̂ and the relevant random variable be-
comes �=��

s�� which takes on the values −s ,−s+2, . . . ,s
−2,s with probability

P� = 2−s� s

s + �

2
� . �22�

It is instructive to consider first the limit u→� of the
saddle-point equations �15�–�20�. Since in this limit �→u
diverges, finite values for the physical order parameters can
be obtained provided that ��→−�. As this condition implies

that both � and M̂ diverge as well, it is useful to introduce

the new variable �0�� /M̂ which is given by the solution of
the equation

sm = �
��−�0

P���0 + ���� �
��−�0

P���0 + �� . �23�

In writing this equation we have used the result that M̂ �0
for m�0. In fact, because P�= P−� the sole effect of chang-

ing the sign of m is the change of the sign of M̂ as well �note

that M̂ =0 for m=0� and so M̂ changes sign only if m does

so. In addition, we have verified numerically that M̂ and
m have opposite signs. Once �0 is known, the quantity

�1=−r1/2M̂ /� is given by

�1 = 1� �
��−�0

P���0 + �� . �24�

Finally, noting that in this limit v→1/u→0 we can write
Q=�1��0+sm� which, as expected, is independent of �. In
general, this procedure has to be carried out numerically.
However, if �0�s then the sums in Eqs. �23� and �24� can be
carried out explicitly yielding �0=1/m and �1=m. Hence
Q=1+sm2 provided that sm�1, which is always the case for
s=1.

The extreme situation m=1 �i.e., only the species i for
which �i

1=�i
2= ¯ =�i

s=1 can survive� admits an analytical
solution parametrized by the integer k=0,1 , . . ., namely

�0 = − �1 − 2−k�s, s � �2k + 1, . . . ,2k+1� �25�

so that �0 is piecewise linear with s. For instance, �0=0 for
s=2, �0=−s /2 for s=3,4, �0=−3s /4 for s=5, . . . ,8, etc. The
result for the Simpson’s index is surprisingly simple in this
limit, namely, Q=2s �see Sec. IV�.

In Fig. 1 we illustrate the dependence of the reciprocal of
parameter Q on m for different values of s. These results
show that the increase of the number of selected species s,
which measures the extension of the external intervention on
the ecosystem, occasion a significant reduction of the eco-
system diversity.
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We turn now to the general case of finite u. A remarkable
fact about the Hebb-like interspecies interactions in the case
m=0 is the appearance of a discontinuity when the parameter
Q is plotted against u or �, as the result of the divergence of
v at u=� for ��1/2 �16,17�. Recalling that values of Q
close to unity are associated with a rich ecosystem �in the
sense that most of the N species coexist� whereas high values
of Q are associated with poor ecosystems �a few species
dominate the ecosystem� the discontinuity indicates that
there are either rich or poor ecosystems: intermediate diver-
sity values are not allowed. The effect of constraining the
equilibrium states according to Eq. �5� is summarized in
Figs. 2 and 3 that present the numerical results for s=1 and
s=5, respectively. Only the solutions for which v�0 are
shown.

The trick to solving the set of saddle-point equations is to
consider � as a fixed, given parameter and u as unknown. By
varying � we can find the saddle-point solutions for different
values of u. This procedure is effective because all sadddle-
point parameters can readily be obtained, once � is given.

Explicitly, to obtain M̂ we solve the equation that results
from the ratio between Eqs. �17� and �16�,

sm =

���
��

�

Dz�z − ����
�

��
��

�

Dz�z − ����
�

, �26�

where ��=�+M̂� and the average �¯
� is taken with the

distribution �22�. Once M̂ is known, we can calculate Q us-
ing Eq. �19� in which r1/2 /� is given by Eq. �16� and r1/2v is
obtained by taking the ratio of Eqs. �15� and �16�, which
yields r1/2v=1/T���� where

T���� =

��
��

�

Dz�z − ����
�

��
��

�

Dzz�z − ����
�

. �27�

The next step is to use Eq. �20� to write

v =
1

��Q�1/2T���� − 1
�28�

and then to obtain � via Eq. �15�. Finally, the value of u that
corresponds to the value of � used in this procedure is ob-
tained using Eq. �18�.

The first point to be noted in Figs. 2 and 3 is that the
discontinuity, when present, always take place at u=�, pro-
vided ��1/2, regardless of the value of m. In fact, the
saddle-point equations admit a solution with diverging sus-
ceptibility v provided that � vanishes so as to keep the prod-
uct �v finite, as given by Eq. �15�. Thus Eq. �18� implies that
u=� �17�. The second remarkable fact we learn from these
figures is that, at least for s=5, the discontinuity may disap-
pear altogether if the value of m is sufficiently large. In fact,
a more detailed study, summarized in Fig. 4, indicates that
this happens for any s�1. In particular, the curves in this
figure are obtained by seeking the value of � for which the
denominator in the expression for v, Eq. �28�, has no roots.

FIG. 1. Reciprocal of Simpson’s index as function of m in the
limit u→� for �top to bottom� s=1, 2, 5, and 10, regardless of the
value of �. In this limit we find v=0.

FIG. 2. Reciprocal of Simpson’s index as a function of the in-
traspecies competition parameter u for s=1, �=0.2 and �top to bot-
tom for u�0.2 and bottom to top for u�0.2� m=0, 0.5, 0.8, 0.9,
and 0.99.

FIG. 3. Reciprocal of Simpson’s index as a function of the in-
traspecies competition parameter u for s=5, �=0.2 and �top to bot-
tom at u=1� m=0, 0.5, 0.6, and 0.8. The discontinuity disappears
for m�0.54.
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A word is in order about the stability of the replica-
symmetric solution. In the regime in which there is a discon-
tinuity in Q, only the solutions corresponding to high values
of 1 /Q �upper branch� fulfill condition �21� and so are lo-
cally stable. On the other hand, when there is no discontinu-
ity in Simpson’s index �e.g., for ��1/2 regardless of s and
m� the replica-symmetric solution becomes unstable for val-
ues of u slightly smaller than �. This is illustrated in Fig. 5
where the susceptibility v is shown in the nonsingular regime
��=0.6, in the case� and the local stability limit is indicated
by the dashed curve. Increase of m results in a slight expan-
sion of the region of replica symmetric stability. Since we
have verified that, in general, such expansion is very small,
we can take u=� as a good guess for the stability boundary
in all cases.

IV. ECOSYSTEM STRUCTURE

An important measure used to gain information on the
structure of ecosystems is the relative abundance of each
species in the community. For instance, classic studies based
on samples of insects �22� and plants �23� led to the conclu-

sion that their abundances are distributed geometrically, i.e.,
most species are relatively rare, whereas a few species are
fairly common. In general, however, the log-normal distribu-
tion, that describes the situation in which the most numerous
category contained species of intermediate abundance, seems
more adequate to fit survey data, specially in thoroughly cen-
sused communities �24�.

To obtain the distribution of abundance in the random
replicator model framework we begin by calculating the cu-
mulative distribution that the concentration of a given spe-
cies, say xk, assumes a value smaller than x, defined by

Ck�x� = lim
�→�
��

0

�

	
j

dxj��x − xk�W��xi��� , �29�

where ��x�=1 if x�0 and 0 otherwise, and W��xi�� is given
by Eq. �14�. Since all species concentrations are equivalent
we can write Ck�x�=C�x�∀k and evaluate Eq. �29� by adding
the field term h�i��x−xi� to Eq. �4�. Taking the derivatives
of the resulting free-energy with respect to h and then the
limit h→0 yield

C�x� = 1 −
1

2
�erfc���r1/2 + �x

�2r�1/2 ��
�

. �30�

From the cumulative distribution we can derive the probabil-
ity density that the abundance of a randomly chosen species
takes on the value x, namely,

P�x� = 	�x�C�0� +
dC�x�

dx
, �31�

where the Dirac delta takes care of the singularity at x=0.
As before, it is instructive to examine first the limit u

→� in detail. Using the notation of Sec. III we can rewrite
Eq. �30� as

C�x� = 1 − �
��−�0+x/�1

P� �32�

with P� given by Eq. �22�. The fraction of extinct species
C�0� can be calculated explicitly for sm�1 and yields
C�0�=0. The dependence of C�0� on m is shown in Fig. 6. If
one counts the single point at m=1 as one plateau, then the

FIG. 4. The value of ��0.5 below which the parameter Q
exhibits a discontinuity at �=u as a function of m for �top to bot-
tom� s=2, 3, 5, and 10. For s=1, the discontinuity is present re-
gardless of the value of m.

FIG. 5. Susceptibility v as a function of the intraspecies compe-
tition parameter u for s=1, �=0.6 and �top to bottom� m=0, 0.5,
0.8, 0.9, and 0.99 The dashed line indicates the limit of stability of
the replica-symmetric solution, which is unstable for small u.

FIG. 6. Fraction of extinct species as a function of m in the limit
u→� for �top to bottom� s=20, 10, 5, and 2. For sm�1 we find
C�0�=0 and for m=1, C�0�=1−2−s �not shown in the figure�.

CONTROLLING SPECIES RICHNESS IN SPIN-GLASS… PHYSICAL REVIEW E 74, 051919 �2006�

051919-5



number of plateaus for fixed s equals the allowed values of
�, namely, s+1. Of course, C�0�=0 for m�1/s is consid-
ered a plateau as well. From this figure we can see that the
distribution of species abundance is given by sums of deltas,
P�x�=C�0�	�x�+���a�	�x−x�� with x�=�1��0+�� and the
sum is restricted to values of � for which x��0. Note that
for m=1 only �=s contributes to the sum in Eq. �32� and so
C�0�=1−2−s. Furthermore, since ���P�x�=1 we find xs=2s.
Similarly, Q=���P�x�

2 implies that Q=2s for m=1, as pointed
out in Sec. III.

The lack of closed expressions for �0 and �1 precludes an
analytical formulation for general s, but for s=1 we find

P�x� =
1

2
	�x − 1 + m� +

1

2
	�x − 1 − m� . �33�

Here the first peak is associated to �=�1=−1 and so x−1=1
−m gives the abundance of the species that lack character
�=1, whereas the second peak is associated to the other spe-
cies type, the abundance of which is x1=1+m. In this case
a−1=a1=1/2. Figure 7 exhibits the amplitudes a� associated
to each x�, together with C�0� at x=0, for s=5. Differently
from C�0� �see Fig. 6�, the number of impulses is usually less
than the possible values of �, due to the restriction in the

sum over � mentioned above. The species labeled by �, the
abundance of which is given by x�, exhibit exactly
��+s� /2 of the selected s features. Hence the species char-
acterized by �=−s are the first ones to go extinct, since for
fixed �0 and �1 we have the sequence of inequalities x−s
�x−s+2� ¯ �xs. �Note that according to Eq. �24� �1 is a
positive-defined quantity.� In fact, for the data shown in Fig.
7 only the species displaying 3, 4, and 5 of the selected five
features are present in the ecosystem. We stress that the
specification of the selected s features solely does not define
a species uniquely, since a species is fully identified by the
list of the p=�N features. Hence there are an infinity of
distinct species characterized by a given value of �.

We turn now to the case of finite u. The fraction of extinct
species at the equilibrium regime, given by C�0�, is shown in
Fig. 8 for s=1. Below the threshold value, uc=�=0.2 for the
data exhibited in this figure, the constraint m has little effect
on the abundance distribution, but for u�uc and m close to 1
aproximately half of the species go extinct, namely, those
species that lack character �=1, since this is the only way to
satisfy simultaneously constraints �2� and �5�. The strong
correlation between the fraction of surviving species or di-
versity 1−C�0� �Fig. 8� and the reciprocal of Simpson’s in-
dex 1/Q �Fig. 2� justifies our use of that index as a measure
of the richness or diversity of the ecosystem. In fact, for m
=1 and u→� both quantities assume the value 2−s.

The finite contributions to the distribution of abundance
are shown in Figs. 9 and 10 for s=1 and s=5, respectively,
where we have chosen values of u and � for which the
replica-symmetric saddle-point parameters are locally stable.
The fact that these distributions become multimodal at inter-
mediate values of m is not a surprise: the smooth peaks ob-
served in these figures are akin to the delta pulses described
in the limit u→�. Those pulses are smoothed out by the
noise resulting from the random interspecies interactions,
which are no longer negligible for finite u. Although in this
case we do not have a neat interpretation of the peak loca-
tions as the abundance of a certain species type, it is still
possible to associate each peak with a given value of � by
looking separately at the contribution of each � to the cumu-
lated distribution, Eq. �30�. Following this line of action, we
have verified that the smooth peaks conform to the pattern
described before for the delta pulses.

FIG. 8. Fraction of extinct species as a function of the intraspe-
cies competition parameter u for s=1, �=0.2 and �bottom to top at
u=1� m=0, 0.4, 0.6, 0.8, and 0.99.

FIG. 9. Finite part of the distribution of abundance for s=1, �
=0.2, u=0.4 �top to bottom at x=1�, m=0, 0.4, 0.6, 0.8, and 0.99.

FIG. 7. Amplitudes at the allowed abundance values in the limit
u→� for s=5, m=0.2 �solid lines� and m=0.5 �dashed lines�. In
both cases, only species characterized by �=1,3, and 5 contribute
to the ecosystem composition.
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V. CONCLUSION

The determinant factors to specify the strengths �and
signs, as well� of the interspecies interactions in a secluded
community are the very features that distinguish a species
from the others. For instance, species that pursue similar
ways of life must compete with one another for resources —
the more similar they are, the fiercer the competition is. This
setting can be neatly modeled within the random replicator
framework �3� by considering Hebb-like interspecies interac-
tions �8�. Two key elements in that formulation are the iden-
tification of species i by a binary string ��i

1 ,�i
2 , . . . ,�i

p� where
�i

�=1 or −1 indicates that species i displays or lacks charac-
ter �, and the use of rule �3� to describe the interspecies
interactions.

In this contribution we explore the possibility to identify
each species unambiguously in order to model human impact
on the ecosystem. This is achieved by imposing that a certain
fraction of the community at the stationary regime is repre-
sented by species with predetermined characteristics �see Eq.
�5��, say, characteristics of economic value �monocultures or
mixture of few cultures�. We find that the average fitness of
the constrained ecosystem is lower than that of the uncon-
strained one. In particular, the optimal composition is that in
which only half of the species display any given feature. The
effect of such intervention on the ecosystem diversity, mea-
sured either by the reciprocal of Simpson’s index 1/Q or by
the fraction of surviving species 1−C�0�, is quite complex
�see, e.g., Figs. 2, 3, and 8�. For instance, in the case the
intraspecies competition, set by the parameter u, is small
�more precisely, u��� the intervention actually helps to in-
crease the diversity, though the increment is rather small. For
large u, however, the reduction in diversity due to enforcing
the presence of species displaying the selected features can
be very pronounced. The practical impossibility to determine
a priori whether the effect of human intervention would be
harmful or not to the species of a generic ecosystem is the
reason that the elucidation of the factors that affect diversity

in real ecosystems remains an open issue in the ecology re-
search agenda �see �25� for a review�.

An important aspect of the prescription �3� for the inter-
species interactions is that it embodies the notion of comple-
mentarity among species with different traits. Two species
are said to be complementary whenever their coexistence
results in an average fitness higher than that obtained if the
individual species had grown alone �25�. Hence one expects
that by artificially selecting some characteristics to be
present in the ecosystem, one inadvertedly promotes the
presence of the complementary species, the characteristics of
which are probably unwelcome. This phenomenon can be
observed by looking at the distribution of abundance in the
community, defined by Eq. �31�. In fact, if a single culture
�s=1� is enforced then the complementary species is always
present as shown in Eq. �33� and Fig. 9. If, however, the
community is composed of a few selected cultures �s�1�
then totally �or almost so� complementary species can be
excluded from the ecosystem �see Figs. 7 and 10�.

Since in this contribution we have opted to present the
relevant quantities as functions of u for fixed �, a word is in
order about the role of the parameter �, which can be asso-
ciated with the complexity of the species. As in the uncon-
strained situation, we find that increase of � results in a
reduction of diversity, indicating thus that the number of spe-
cies that can coexist decreases with the complexity of the
species �17�.

From the perspective of the statistical mechanics of dis-
ordered systems—the random replicator is a spin-glass
model in which the spin variable is restricted to the hyper-
plane defined by constraint �2�—we find the interesting re-
sult that by increasing the number or the strength of the
constraints on the equilibrium state �i.e., by incrementing the
values of s or m� the discontinuity of Simpson’s index dis-
appears altogether. We note, however, that the more subtle
transition, associated to the local instability of the replica-
symmetric saddle-point parameters, is always present and, in
particular, that the constraints slightly enlarge the replica
symmetric phase.

In summary, we have focused on the effect of manipulat-
ing the ecosystem so as to guarantee that a fraction of the
surviving species at equilibrium display a selected set of fea-
tures �e.g., features of economical interest�. Within the
framework of the random replicator model of ecosystems in
which the interspecies interactions are symmetric and the
population well mixed, we find that in most cases the conse-
quence of this intervention is the increase of the number of
species that become extinct, leading thus to the impoverish-
ment of the ecosystem.
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FIG. 10. Finite part of the distribution of abundance for s=5,
�=0.1, u=0.4 �top to bottom at x=1�, m=0.3, 0.4, 0.6, and 0.8.
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